Various proofs of 0.999... = 1

Mike Dylan Poppelaars

February 7, 2025

Contents

1	Algebraic Proof	2
2	Infinite Series Proof	2
3	Archimedean Property	3

1 Algebraic Proof

1. Let

$$x = 0.\overline{9} \tag{1}$$

where $0.\overline{9}$ denotes 0.999...

2. Multiply both sides by 10:

$$10x = 9.\overline{9} \tag{2}$$

3. Subtract (1) from (2):

$$10x - x = 9.\overline{9} - 0.\overline{9}$$
$$9x = 9$$
$$x = 1$$

4. Since $x = 0.\overline{9}$ (from (1)), we conclude:

$$0.\overline{9} = 1 \quad \Box$$

2 Infinite Series Proof

We observe that

$$0.\overline{9} = 0.9 + 0.09 + 0.009 + 0.0009 + \cdots = S$$

where $0.\overline{9}$ denotes 0.999... This is a geometric series S with first term a=0.9 and common ratio r=0.1.

The sum of an infinite geometric series is given by

$$S = \frac{a}{1 - r}. (3)$$

Substituting a = 0.9 and r = 0.1 into (3), we find

$$S = \frac{0.9}{1-0.1} = \frac{0.9}{0.9} = 1 \quad \Box$$

Proof of the Geometric Series Formula

For completeness, we prove (3). Consider a geometric series of the form:

$$S = a + ar + ar^2 + ar^3 + \cdots, \tag{4}$$

where a is the first term and r is the common ratio (|r| < 1 for convergence). Multiply both sides of (4) by r:

$$Sr = ar + ar^2 + ar^3 + ar^4 + \cdots$$
 (5)

Subtract (5) from (4). Notice that most terms on the right-hand side cancel:

$$S - Sr = a$$
.

Factor out S on the left-hand side:

$$S(1-r) = a.$$

Solving for S, we obtain

$$S = \frac{a}{1 - r} \quad \Box$$

3 Archimedean Property

- 1. Assume for contradiction that $0.999... \neq 1$. Then 0.999... < 1.
- 2. Let $\varepsilon = 1 0.999...$, which is a positive real number.
- 3. By the Archimedean Property, there exists a positive real integer N such that $10^{-N}<\varepsilon.$
- 4. Consider the partial sum of 0.999... after N decimal places, which is $1-10^{-N}$. Since all subsequent digits are $9s,\,0.999...\geq 1-10^{-N}$.
- 5. \Rightarrow 1 0.999 . . . $\leq 10^{-N}$.
- 6. Combining the results from steps 3 and 5, we get $\varepsilon = 1 0.999... \le 10^{-N} < \varepsilon$.
 - $\Rightarrow \quad \varepsilon < \varepsilon$
 - \Rightarrow 0.999...=1 \square